If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10t^2-20t=45
We move all terms to the left:
10t^2-20t-(45)=0
a = 10; b = -20; c = -45;
Δ = b2-4ac
Δ = -202-4·10·(-45)
Δ = 2200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2200}=\sqrt{100*22}=\sqrt{100}*\sqrt{22}=10\sqrt{22}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-10\sqrt{22}}{2*10}=\frac{20-10\sqrt{22}}{20} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+10\sqrt{22}}{2*10}=\frac{20+10\sqrt{22}}{20} $
| 1,331x3−216=0 | | (-13)-n=13 | | x-258/120=0.85 | | 5p+p=320 | | x-8/2=x-5/6 | | 4c+c=150000 | | x-62000=0.25 | | |3x-1|+5=7 | | Y=(1-10x)(6x+1) | | y^2+2y=-26 | | √3a-6√12a-6=√108a | | -210+100x=690 | | t*t*t-27t+3=0 | | 8+6x-5x+22x=12 | | 9y^2-30y=-19 | | 9x^2-30x+19=0 | | 3(v-1)=5v+3-2(-3v-4) | | 8+x/3=5 | | -2(y+5)=8y-6+2(4y+1) | | -2(4u-4)+8u=8+3(4u-5) | | -4(-5u+5)-3u=5(u-3)-8 | | 4x/5-9=25 | | 9x/7x-6=15 | | 5x-2(3x-8)=3(2x-1)+7/3 | | 5(v+5)=-3(2v-7)+5v | | 5(v+5)=-(2v-7)+5v | | 5y+10=3y+16 | | -2(u+1)=4u-2+4(2u+2) | | x/4=5/2.5 | | x/2=7/3.5 | | 2/x=3.5/7 | | 20t^2-32t+15=0 |